
Rhyme with AI

IP whitelisting your Chalice
application

GCP powered EV charging

D
A

TA
 S

C
IE

N
C

E
 IN

 P
R

O
D

U
C

T
IO

N
A

n
 A

I &
 M

ach
in

e L
earn

in
g

 E
d

ito
rial

INDEX

03

04

10

13

16

20

RHYME WITH AI

SCHIPHOL TAKEOFF -
AUTOMATE DEPLOYMENT
WITHOUT WRITING CODE!

IP WHITELISTING YOUR
CHALICE APPLICATION

THE LINEAR ALGEBRA
BEHIND LINEAR
REGRESSION

GCP POWERED EV
CHARGING

DATA DRIVEN BOARD GAME
DESIGN

0
3

RENS DIMMENDAAL
HENK GRIFFIOEN

RHYME
 WITH AI

Language modeling helps state-of-the-art models understand languages before solving tasks
like sentiment analysis or translation. Masking, where the model tries to predict a word that
is hidden from a sentence, is one of BERT’s innovations. We can use it to help us rhyme by
rephrasing rhyming as a task to predict missing words.

NLP’s ImageNet moment may have arrived in 2018, but the ecosystem around NLP models really has matured

in 2019. Many of these models (BERT, GPT-2, Transformer-XL, DistilBERT, etc.) are easy to use for your use

cases. Our service uses BERT to help us with our (Christmas) rhymes.

Our problem involves multiple masks: we know

the first sentence and the last word of the second

sentence. For instance:

Santa delivers gifts by sleigh

– � ... [MASK] [MASK] [MASK] [MASK] [MASK] [MASK]

[MASK] [MASK] day

From the “The Illustrated BERT, ELMo, and co.”. Predicting masked tokens is
one of BERT’s language modelling techniques.

Inspired by BERT has a Mouth, and It Must Speak, we

first let BERT fill in the [MASK]’s and then randomly

sample new tokens. Some example rhymes from our

model:

Santa delivers gifts by sleigh

– � ... and drinks and celebrates his wedding day

– � ... dressed as preacher and nurse they say

– � ... or bicycle if he has to pay

This already looks pretty good, but we need a

solution that people can use!

Luckily, creating an end-to-end machine learning

solution is fairly simple. The Datamuse API gives

back rhyme words, BERT is available via huggingface

and creating an app is no sweat with streamlit.

Put it all together in a Docker container and a hosted

solution is one command away with Google App

Engine.

A few days well spent for us will hopefully save you

a lot of pain. Check out or code on GitHub or try our

solution at Rhyme with AI!

https://thegradient.pub/nlp-imagenet/
https://github.com/huggingface/transformers
http://jalammar.github.io/illustrated-bert/
https://arxiv.org/abs/1902.04094
https://www.datamuse.com/api/
https://huggingface.co
https://www.streamlit.io
https://cloud.google.com/appengine/
https://cloud.google.com/appengine/
https://github.com/godatadriven/rhyme-with-ai

0
4

WITHOUT WRITING CODE!

TIM VAN CANN
DANIEL VAN DER ENDE

SCHIPHOL
TAKEOFF –
AUTOMATE
DEPLOYMENT
What makes Schiphol Takeoff awesome?

Right out of the box Schiphol Takeoff provides

a sensible way to deploy your application across

different environments!

During our time at Schiphol Group, we built a

project which helps automate deployments.

Schiphol Group was kind enough to let us open

source this project. We’ll give a quick introduction

to what it does and how it could help you get to

production quicker.

OUR USE CASE
To give a bit more insight into why we built Schiphol

Takeoff, it’s good to take a look at an example use

case. This use case ties a number of components

together:

– � Data arrives in a (near) real-time stream on an

Azure Eventhub.

– � A Spark job running on Databricks consumes

this data from Eventhub, processes the data,

and outputs predictions.

– � A REST API is running on Azure Kubernetes

Service, which exposes the predictions made

by the Spark job.

Conceptually, this is not a very complex setup.

However, there are quite a few components

involved:

– � Azure Eventhub

– � Azure Databricks

– �� Azure Kubernetes Service

Each of these individually has some form of

automation, but there is no unified way of

coordinating and orchestrating deployment of

the code to all at the same time. If, for example,

you were to change the name of the consumer

group for Azure Eventhub, you could script that.

However, you’d also need to manually update your

Spark job running on Databricks to ensure it could

still consume the data.

Moreover, this list of components is not complete.

These are the components that operate ‘on the

foreground’ to deliver the service. Components

like Azure Keyvault (for storing secrets), private PyPi

repository (for storing Python artifacts), and Azure

Blob Storage (for storing artifacts on disk), are not

mentioned here, yet play an important role.

0
5

WHAT MAKES SCHIPHOL
TAKEOFF AWESOME?

Finally, not only does this setup requires quite some

configuration to orchestrate the components; in a

proper production-like setting, you will probably

have more than one environment. Most likely,

you’ll have at least a Development and Production

environment, to ensure that mistakes by developers

(we’re all human after all) don’t affect your end

users. This complicates matters even further,

because now not only do you need to keep all the

components in line, you also need to ensure this

happens reliably across environments, without

impacting users.

As you can see, without going into deep technical

detail of what you would need to do (this would

involve a lot of screenshots, yaml, and custom

configuration per component), this simple setup

results in a complex productionisation, with many

pitfalls along the way.

ENTER SCHIPHOL TAKEOFF
Schiphol Takeoff’s goal is twofold:

1. � Remove the load placed on data scientists and

developers of knowing details about multiple

components and how their APIs work.

2. � Ensuring reliable and, most importantly, easy

deployment of a project is possible.

To achieve the deployment of the project described

in the above, Schiphol Takeoff would require a few

things:

1. � A working CI environment (with Docker support)

for it to run in.

2. � Azure Keyvault setup with the required secrets

for the various components.

3. � Two files in your project repository:

	 – � A Takeoff configuration yaml, which tells

Takeoff what the names of your secrets are

in the Keyvault.

	 – � A Takeoff deployment yaml, which tells

Takeoff which tasks it needs to execute.

We don’t want to make this blogpost a yaml-fest,

so we won’t go into details of both these files.

If you want to know more, head over to Takeoff’s

documentation website or the Github repository.

It is useful, however, to show the Takeoff deployment

yaml, as it clearly shows how little a developer

would need to do to get things up and running,

and to define steps to deploy. Please note that in

a “real-world” situation you probably would split

up some things into separate repositories (i.e. you

probably would have the REST API in a separate

repository). This example is purely to demonstrate

Takeoff’s capabilities.

0
6

steps:

 - task: configure_eventhub

 create_consumer_groups:

 - eventhub_entity: input-eventhub

 consumer_group: algorithm-group

 create_databricks_secret: true

 - eventhub_entity: input-eventhub

 consumer_group: rest-sink-group

 create_databricks_secret: true

 create_producer_policies:

 - eventhub_entity: output-eventhub

 create_databricks_secret: true

 - task: build_artifact

 build_tool: python

 - task: publish_artifact

 language: python

 python_file_path: “main/main.py”

 target:

 - cloud_storage

 - task: deploy_to_databricks

 jobs:

 - main_name: main/main

 config_file: databricks.json.j2

 lang: python

 - task: deploy_to_kubernetes

 deployment_config_path:

 “k8s_config/deployment.yaml.j2”

 �service_config_path: “k8s_config/service.

yaml.j2”

These 27 lines (yeah, we counted) are all you need.

Every time you commit to your project now, these

steps will be run, and will deploy your application

per environment (depending on how you’ve setup

your deployment configuration).

https://schipholgroup.github.io/takeoff/
https://schipholgroup.github.io/takeoff/
https://github.com/schipholgroup/takeoff

0
7

CORE PRINCIPLES
Schiphol Takeoff is a deployment orchestration tool that abstracts away much of

the complexity of tying various cloud services together. It allows developers to

focus on actual development work, without having to worry about coordinating

a (large) number of cloud services to get things up and running across multiple

environments. Schiphol Takeoff itself is a Python package and comes bundled

in a Docker image. In this way, Schiphol Takeoff is CI agnostic, assuming your

CI provider allows running Docker containers. It was developed with a few core

principles in mind:

– � Schiphol Takeoff is meant to run during your CI/CD pipeline; preferably in

Docker as containerization abstracts aways many dependency complications.

Most CI providers nowadays support running Docker.

– � Schiphol Takeoff does not deploy infrastructure or setup virtual machines

and as such is not comparable to Terraform or Ansible. Instead, it deploys

your application and arranges interdependencies between the services the

application needs access to.

– � Schiphol Takeoff was built with modularity in mind from the start.

We envisioned and developed it like pieces of Lego™: it is very easy to add

and remove blocks, change prebuilt sets and even add new sets to it.

More on this later!

WHAT MAKES SCHIPHOL TAKEOFF AWESOME
Right out of the box Schiphol Takeoff provides a sensible way to deploy your

application across different environments.

ENVIRONMENTS
Schiphol Takeoff deploys your application to any environment on your cloud.

Your CI provider pulls the Schiphol Takeoff image from dockerhub.

Schiphol Takeoff then determines what git branch your project is currently on,

and using that will decide where the deployment should go. For example, this is

how we use Schiphol Takeoff ourselves:

– � feature branches will be deployed to your development environment;

– � master branches will be deployed to acceptance;

– � git tags are considered releases and are deployed to production.

https://www.terraform.io
https://www.ansible.com
https://hub.docker.com/repository/docker/schipholhub/takeoff

It will also make sure versions are preserved during

deployment to these environments -- given the

previous example - development will receive a

version equal to the name of your feature branch;

- acceptance will receive the version SNAPSHOT; -

production will take the git tag as version.

Concretely this means that many feature bran-

ches may be running simultaneously, but only one

SNAPSHOT or version will be running.

For this all to work, Schiphol Takeoff makes some

assumptions about naming conventions.

For example, in the case of Microsoft Azure, each

of these environments basically mean a separate

resource group. These resource groups are identical

in the fact that they contain the same services, but

otherwise might be different in terms of scaling and

naming of services. Based on naming conventions

Schiphol Takeoff determines during CI which service

in which resource group it should deploy to.

PLUGINS
We know that not everyone has the same

environments, or might want a different versioning

tactic: maybe

– � release versions should go to acceptance as well;

– � and SNAPSHOT should go to testing.

This is where Schiphol Takeoff plugins come in to

play. Using Python, we allow you to write your own

custom logic regarding what should go where and

when. We also allow you to introduce your own

naming conventions and logic in the form of a

Python plugin.0
8

MODULAR
Schiphol Takeoff was built using Microsoft Azure in

mind, as it is the cloud provider used by the Schiphol

Data Hub. This means that most services are Azure

services, with a few useful exceptions. However, very

important to know is that everything in Schiphol

Takeoff was built with modularity in mind. In the

future, we hope to be able to support other (cloud)

platforms.

TESTABLE AND TESTED
Schiphol Takeoff leans heavily on the greatness

of Python. It is easy to read, understand and

importantly it is very easy to test -- unlike bash

scripts, makefiles or generic CI configuration

which are significantly harder to test (though not

impossible). Hence, most* services are deployed

using readily available python SDKs.

– � with the exception of very few services using shell

to run and deploy. For example: building scala

projects using SBT is done by calling a python

subprocess.

CI AGNOSTIC
Thanks to the fact that Schiphol Takeoff runs in

Docker, we are fully CI agnostic. Most (if not all)

major CI providers are capable of running Docker

images and even support Docker-in-Docker (DIND).

The latter is needed to make sure Schiphol Takeoff

has access to the Docker socket in order to build

and push docker images, which it can do! Due to

some migrations we’ve had to switch CI providers a

few times and found that running Schiphol Takeoff

did not change anything in our dependent projects.

It generally took around half a day to get to know

the new CI provider, setup DIND and everything

worked smoothly again!

CLOUD AGNOSTIC (SORT OF...)
As mentioned earlier, Schiphol Takeoff was built with

Microsoft Azure in mind, but we would like to stress

that this does not mean you have to write your own

component that deploys kubernetes applications

to Google Cloud Platform on Google Kubernetes

Engine. In fact, we already support deploying to

Azure Kubernetes Service!

0
9

IN SUMMARY...
Schiphol Takeoff is a deployment automation tool that

makes your life easier by taking care of interactions

with the various services you may need to bring your

application to your users. It allows you to focus on

your application, rather than all the (cloud) components

you need, and gives you reliable deployments across

environments. Of course, we may not support the

component or service that you need for your application.

Luckily it’s open source, and we’d be thrilled to see

contributions (issues, pull requests etc.) to expand

Schiphol Takeoff even further. You can find the source

code here.

https://github.com/schipholgroup/takeoff

1
0

BAS HARENSLAK

IP WHITELISTING
YOUR CHALICE
APPLICATION
Chalice is a very useful framework for quickly developing REST APIs with Python hosted
on AWS Lambda and exposed via the AWS API Gateway, no infrastructure provisioning
required. So now you’ve written your application, but don’t want to expose it to the world wide
internet. This blog post demonstrates how to apply a resource policy in Chalice which limits
access to a specific (range of) IP address(es).

DEPLOYING A DEMO APPLICATION
For demo purposes, let’s deploy a small Chalice application which returns the current time in the given

timezone:

 chalice new-project worldtime

In app.py:

import datetime

import pytz

from chalice import Chalice, UnprocessableEntityError

from pytz import UnknownTimeZoneError

app = Chalice(app_name=”worldtime”)

@app.route(“/timezone/{timezone}”, methods=[“GET”])

def gettime(timezone):

 try:

 return f”It’s currently {datetime.datetime.now(pytz.timezone(timezone))} in {timezone}.”

 except UnknownTimeZoneError:

 raise UnprocessableEntityError(msg=f”Timezone ‘{timezone}’ unknown to pytz.”)

Deploy with chalice deploy to receive the URL the application is deployed on (account details are obfuscated):

$ chalice deploy

Creating deployment package.

Creating IAM role: worldtime-dev

Creating lambda function: worldtime-dev

Creating Rest API

Resources deployed:

 - Lambda ARN: arn:aws:lambda:eu-west-1:012345678999:function:worldtime-dev

 - Rest API URL: https://urwolo1et3.execute-api.eu-west-1.amazonaws.com/api/

https://github.com/aws/chalice
https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/

1
1

AUTOMATE
DEPLOYMENT

Chalice created the required resources (o.a. Lambda

& API Gateway) and we can now call the deployed

API from anywhere on the planet, for example:

�curl https://urwolo1et3.execute-api.eu-west-1.

amazonaws.com/api/timezone/utc

�It’s currently 2019-10-26 09:50:04.948863+

00:00 in utc.

curl -i https://urwolo1et3.execute-api.eu-

west-1.

amazonaws.com/api/timezone/donotcompute

HTTP/2 422

...

{“Code”:”UnprocessableEntityError”,”Message”:

”UnprocessableEntityError: Timezone

‘donotcompute’ un known to pytz.”}

LIMITING ACCESS TO THE API GATEWAY
If you want your application to be accessible from

e.g. only within your company, you can control

access to the API Gateway with resource policies.

These can be configured in the API Gateway ->

Resource Policy tab. First you need the ARN of

the deployed endpoint:

Next, insert the following policy in the Resource

Policy tab, with your IP address in it (remove /GET/

timezone/* to apply the policy to all endpoints):

{

 “Version”: “2012-10-17”,

 “Statement”: [

 {

 “Effect”: “Allow”,

 “Principal”: “*”,

 “Action”: “execute-api:Invoke”,

 “Resource”: “arn:aws:execu

 te-api:eu-west-1:012345678999:

 urwolo1et3/*/GET/timezone/*”,

 “Condition”: {

 “IpAddress”: {

 “aws:SourceIp”: [

 “123.123.123.123”

]

 }

 }

 }

]

}

After saving the resource policy, the API Gateway

is however still accessible from everywhere.

To enforce the resource policy, we must redeploy

the Chalice application. However, when running

chalice deploy again, the just configured resource

policy disappears, and the endpoint remains open

to the world! So, why is this?

https://aws.amazon.com/about-aws/whats-new/2018/04/amazon-api-gateway-supports-resource-policies/

CONFIGURING THE CHALICE APPLICATION
Upon deployment, Chalice auto-generates and

applies policies. It maintains all state within a .chalice

directory generated with the project and does not

inspect the AWS project state. As a result, the

manually configured policy is overridden with, in

this case, nothing, since we haven’t configured any

policies yet. So let’s configure the policy within

Chalice instead of the AWS console.

In the .chalice directory, you have a config.json file.

The empty config.json looks as follows1:

{

 “version”: “2.0”,

 “app_name”: “worldtime”,

 “stages”: {

 “dev”: {

 “api_gateway_stage”: “api”

 }

 }

}

To apply the resource policy to the API Gateway, add

a configuration item api_gateway_policy_file:

{

 “version”: “2.0”,

 “app_name”: “worldtime”,

 “api_gateway_policy_file”: “ipwhitelist.json”,

 “stages”: {

 “dev”: {

 “api_gateway_stage”: “api”

 }

 }

}

Chalice searches for the given filename

ipwhitelist.json from the .chalice directory,

so create a file .chalice/ipwhitelist.json with the

resource policy inside. Next, run chalice deploy

once again, and you’ll now find the contents of

ipwhitelist.json in the AWS console. When calling

the API from an IP not defined in the policy, we

now receive an error:

$ curl https://urwolo1et3.execute-api.eu-west-1.

amazonaws.com/api/timezone/utc

{“Message”:”User: anonymous is not authori

zed to perform: execute-api:Invoke on resource:

arn:aws:execute-api:eu-west-1:********8999:

urwolo1et3/api/GET/timezone/utc”}

Chalice is very configurable and allows for a much

more detailed configuration than the “global”

restriction applied above to the entire application,

e.g. a policy per stage to restrict the development

endpoint to your company IP and allow the

production endpoint to the entire world.

It definitely helps to go through the Chalice

documentation.

1
2

OUTPUT._FILE

1 � Chalice config file documentation:
https://chalice.readthedocs.io/en/latest/topics/configfile.html

RUBEN VAN DE GEER

https://chalice.readthedocs.io/en/latest/
https://chalice.readthedocs.io/en/latest/
https://chalice.readthedocs.io/en/latest/topics/configfile.html

1
3

1 � The implementation of sklearn.linear_model.LinearRegression is a
little bit more intricate than the approach discussed here.
Specifically, matrix factorization is used (e.g., QR-factorization) to
prevent having to numerically invert matrices (which is numerically
unstable, see, e.g., the Hilbert matrix). For the rest, the exact same
approach applies.

RUBEN VAN DE GEER

THE LINEAR
ALGEBRA
BEHIND LINEAR
REGRESSION
Linear algebra is a branch in mathematics that deals with matrices and vectors. From linear regression to the

latest-and-greatest in deep learning: they all rely on linear algebra “under the hood”. In this blog post, I explain

how linear regression can be interpreted geometrically through linear algebra.

This blog is based on the talk A Primer (or Refresher) on Linear Algebra for Data Science that I gave at PyData

London 2019.

LINEAR REGRESSION PRIMER
In Ordinary Least Squares (i.e., plain vanilla linear

regression), the goal is to fit a linear model to

the data you observe. That is, when we observe

outcomes yi and explanatory variables xi, we fit the

function which is illustrated below

This boils down to finding estimators ß̂0 and ß̂1 that

minimize the mean squared error of the model:

where n is the number of observations.

To solve this minimization problem, one way

forward would be to minimize the loss function

numerically (e.g., by using scipy.optimize.minimize).

In this blog post, we take an alternative approach

and rely on linear algebra to find the best parame-

ter estimates. This linear algebra approach to linear

regression is also what is used under the hood when

you call sklearn.linear_model.LinearRegression.1

min
�̂0,�̂1

nX

i=1

⇣
yi �

⇣
�̂0 + �̂1xi

⌘⌘2

,

yi = �0 + �1xi + ei,

https://en.wikipedia.org/wiki/Hilbert_matrix
https://www.youtube.com/watch?v=Qz58vTa8-SY
https://en.wikipedia.org/wiki/Ordinary_least_squares

1
4

LINEAR REGRESSION IN MATRIX FORM
Assuming for convenience that we have three

observations (i.e., n=3), we write the linear

regression model in matrix form as follows:

Note that the matrix-vector multiplication Xß

results in

which is essentially just a compact way of writing

the regression model.

GEOMETRICAL REPRESENTATION OF LEAST
SQUARES REGRESSION
The objective is to obtain an estimator ß̂ such that

y≈Xß̂ (note that, usually, there is no ß̂ such that

y=Xß̂; this only happens in situations that are unlikely

to occur in practice).

To represent the problem of estimating ß̂

geometrically, observe that the set

represents all the possible estimators for ŷ .

Now, imagine this set to be a plane in 3D space

(think of it is a piece of paper that you hold in front

of you). Note that y does not “live” in this plane,

since that would imply there is a ß̂ such that Xß̂ =y.

All in all, we can represent the situation as follows:

Finding the best estimator ß̂ , now boils down to

finding the point in the plane that is closest to y.

Mathematically, this point corresponds with the ß̂

such that the distance between Xß̂ and y is

minimized. In the following figure, this point point

is represented by the green arc:

Namely, this is the point in the plane such that

the error (e) is perpendicular to the plane. It is

interesting to note that minimizing the distance

between Xß̂ and y means minimizing the norm of e

(vector norms are used in linear algebra to give

meaning to the notion of distance in higher

dimensions than two):

hence we are minimizing the mean squared error of

the regression model!

ESTIMATING ß0 AND ß1
It remains to find a ß̂ such that the vector e=y−Xß̂

is perpendicular to the plane. Or, in linear algebra

terminology: we are looking for the ß̂ such that e

is orthogonal to the span of X (orthogonality

generalizes the notion of perpendicularity to higher

dimensions).

In general, it holds that two vectors u anv v are

orthogonal if uTv=u1v1+...+unvn=0 (for example:

u=(1,2) and v=(2,−1) are orthogonal). In this

particular case, e is orthogonal to X if e is

orthogonal to each of the columns of X.

This translates to the following condition:

2

4
y1
y2
y3

3

5

| {z }
y

=

2

4
1 x1

1 x2

1 x3

3

5

| {z }
X


�0

�1

�

|{z}
�

+

2

4
e1
e2
e3

3

5

| {z }
e

= X� + e

X� =

2

4
�0 + �1x1

�0 + �1x2

�0 + �1x3

3

5

{X�̂ for all possible �̂}

“norm of e” = |e| = |y �X�̂| =
nX

i=1

⇣
yi �

⇣
�̂0 + �̂1xi

⌘⌘2

(y �X�̂)>X = 0

https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm
https://en.wikipedia.org/wiki/Orthogonality#Euclidean_vector_spaces

1
5

By applying some linear algebra tricks (matrix

multiplications and inversions), we find that:

Hence, ß̂ =(XTX)−1XTy is the estimator we are after.

NUMERICAL EXAMPLE
Suppose we observe:

x = [1, 1.5, 6, 2, 3]

y = [4, 7, 12, 8, 7]

Then, to apply the results from this blog post, we

first construct the matrix X:

X = np.asarray([np.ones(5), x]).T

print(X)

>>> [[1. 1.]

>>> [1. 1.5]

>>> [1. 6.]

>>> [1. 2.]

>>> [1. 3.]]

and then do the matrix computations2

from numpy.linalg import inv

beta_0, beta_1 = inv(X.T @ X) @ X.T @ y

print(beta_0, beta_1)

>>> (4.028481012658229, 1.3227848101265818)

X>
⇣
y −X�̂

⌘
= 0 ,

X>y −X>X�̂ = 0 ,
X>y = X>X�̂ ,

�
X>X

�−1
X>y = �̂

which gives us our esimates. To illustrate these,

results

x_lin_space = np.linspace(0, 7, 100)

y_hat = beta_0 + beta_1 * x_lin_space

plt.scatter(x, y, marker=’x’)

plt.plot(x_lin_space, y_hat, color=’r’)

which shows the fit of our model:

Although this blog post was written around a

simple example with only one feature, all the

results generalize without any difficulties to higher

dimensions (i.e., more observations and more

features).

If you have enjoyed this post, probably the fast.ai

course on computational linear algebra is for you

(it’s free).

2 � This is where you would like to use matrix factorization to prevent
having to compute (XTX)−1 directly; see also footnote 1.

https://www.fast.ai/2017/07/17/num-lin-alg/
https://www.fast.ai/2017/07/17/num-lin-alg/

1
6

ROEL BERTENS

GCP
POWERED EV
CHARGING
Are you considering to switch to electric for your next car but doubting the charging
possibilities in your neighborhood? Well, I was. And I also just got certified as a Google
Cloud Professional Data Engineer. Curious how I used GCP to answer my question?
Read along.

COLLECT DATA
The first thing you need, to answer any question really, is data. So I set out to collect information about the

usage of the electric charging stations in my neighborhood at home in Utrecht and around the GDD office in

Amsterdam.

You can for example find the current available charging stations at NewMotion. You might have already guessed

that I’m not going to collect this data manually. So I created a Cloud Function to collect and store data. In short,

I wrote a simple collect function that requests the current status for the set of charging stations I’m interested

in and which uploads the response as a blob on Google Cloud Storage. Given a dictionary of station names and

identifiers this collect function looks as follows.

def collect(request):

 stations = {‘station_name’: 123456}

 for name, uid in stations.items():

 now = dt.datetime.now().strftime(‘%Y%m%d-%H%M%S’)

 upload_blob(bucket_name_str=’charge-stats’,

 station_status_str=get_station_status(uid),

 destination_blob_name_str=f’{name}_{now}’)

Where get_station_status simply sends a requests which returns some text data that we store in a bucket.

We simply use Google Cloud Storage here because it is cheap. Also, the size of this data is not very big,

so we won’t need a more optimized data storage solution. We will be able to load it all in memory.

The upload_blob function looks as follows.

def upload_blob(bucket_name_str, station_status_str, destination_blob_name_str):

 “””Uploads data to the bucket.”””

 storage_client = storage.Client()

 bucket = storage_client.get_bucket(bucket_name_str)

 blob = bucket.blob(destination_blob_name_str)

 �blob.upload_from_string(station_status_str, content_type=’text/plain’, client=None,

predefined_acl=None)

https://my.newmotion.com

1
7

To create your own Cloud Function you simply

paste the above python code in the inline editor in

main.py after choosing Python 3.7 as Runtime.

In requirement.txt you specify the packages needed,

here python, pandas, pytz, requests, google-cloud-

storage. And finaly you specify collect as the

Function to execute.

SCHEDULING
Next step is to make sure that this Cloud Function

runs on a fixed interval to actually start collecting

data. Cloud Scheduler to the rescue. It is very easy,

you only have to specify the frequency, choose

HTTP as target and specify the URL of your Cloud

Function.

The Cloud Storage bucket I created is filling up

automatically with many blobs containing informa-

tion about the usage of the charging stations I’m

interested in.

PREPARE DATA
The storage bucket now contains many time

stamped blobs which I need to put together to

create a data set for exploration. To avoid setting up

policies and access rights I use Google’s AI Platform

to spin up a notebook in which I can quickly load the

data from Google Storage and immediately start to

explore it.

After collecting data each minute for more than two

months for 14 charging stations I’ve collected almost

1.5 million blobs. Each blob contains json data from

which I select the station name, a unique identifier

for a pole at the station (a station can have more

poles), the status of the pole and the timestamp.

Putting everything together my data set looks as

follows.

https://cloud.google.com/scheduler/
https://cloud.google.com/ai-platform/

AMS - eerste_ringdijkstraat14 (1174809)

AMS - eerste_ringdijkstraat14 (1174808)

AMS - eerste_ringdijkstraat14 (1174807)

AMS - eerste_ringdijkstraat14 (1174806)

AMS - burmandwarstraat (1173437)

AMS - burmandwarstraat (1173436)

AMS - weesperzijde1046 (1175768)

AMS - weesperzijde1046(1175769)

AMS - weesperzijde98 (1177249)

AMS - weesperzijde98 (1177248)

AMS - schollenbrugstraat (1174189)

AMS - schollenbrugstraat(1174188)

UT - mandarijnstraat (1176733)

UT - mandarijnstraat (1176732)

AMS - wilbaustraat (970134)

UT - morelstraat (1176021)

UT - morelstraat (1176020)

UT - ondiep (1175013)

UT - ondiep (1175014)

UT - olijfboomstraat (1220024)

UT - olijfboomstraat (1220023)

UT - thorbeckelaan (1309184)

UT - thorbeckelaan (1309183)

Average time of the charging sessions

0 5 10 15 20 25 30 35

Mean

Median

C
h

ar
g

in
g

 p
o

le

1
8

EXPLORE DATA
Putting everything together we have information about the usage of 5 charging station in Utrecht and 9 in

Amsterdam for about 2 months. After some quick counts I found out that for 4 of the stations in Amsterdam

something weird is going on. There were only very few state changes recorded for these stations, which is

unexpected for their location. I suspect that either something went wrong in the data collection, maybe the

stations weren’t reachable because of construction or something else is going on. Either way, their usage was

so unexpected/low and different from the rest that I removed these stations for further analysis.

Time for some questions!

HOW OFTEN ARE THE CHARGING POLES USED?
Looking at all charging poles in scope we see that they are only occupied for about 39 percent of the time.

There is quite some variation between stations though.

HOW LONG ARE THE CHARGING SESSIONS?
The average charging session is about 10 hours (median 7 hours) and again there is quite some variation

between different poles. Most notably, the different poles at the same station also differ quite much.

The clearest example to see this effect is AMS - weesperzijde 98, which has the largest average on one pole

and one of the smallest on the other.

Note: a charge session is

the time that a vehicle

is connected to the pole

(so it can be that the

battery is already full).

100 20 30 40 50 60

Percentage

Status over all charging poles

Unkown

Unavailable

Occupied

Available

Sa
tu

s

20 40 60 80

Percentage

Status per charging station

AMS - eerste_ringdijkstraat14

AMS - burmandwarstraat

AMS - weesperzijde1046

AMS - weesperzijde98

AMS - schollenbrugstraat

UT - mandarijnstraat

AMS - wilbaustraat

UT - morelstraat

UT - ondiep

UT - olijfboomstraat

UT - thorbeckelaan

Unkown
Unavailable
Occupied
Available

st
at

io
n

_
n

am
e

1
9

WHAT TIME OF THE DAY ARE PEOPLE
CHARGING?
It is clear to see that most people charge overnight

and start charging again when they get back from

work, since the usage increases again from four

o’clock in the afternoon.

Zooming in on specific poles we clearly see two

different patterns. The first pattern is the one

described above; charging dip during working hours.

The second patterns is the inverse of the first;

charging peak during working hours.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

Hour

Average usage per hour over all chargingpoles

Pe
rc

en
ta

ge
 o

cc
up

ie
d

5

10

20

25

30

35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

10

20

30

40

50

60

10

20

30

40

50

60

Hour Hour

Average usage per hour for pole: 1173436
AMS - burmandwarsstraat

Average usage per hour for pole: 1174809
AMS - eerste_ringdijkstraat14

Pr
ec

en
ta

ge
 o

cc
up

ie
d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
0

10

20

30

40

50

60

10

20

30

40

50

60

Hour Hour

Average usage per hour for pole: 1173436
AMS - burmandwarsstraat

Average usage per hour for pole: 1174809
AMS - eerste_ringdijkstraat14

Pr
ec

en
ta

ge
 o

cc
up

ie
d

TO BUY OR NOT TO BUY
I found that there are more than enough charging

possibilities for me both around work and at home.

Especially in Utrecht the charging poles are still

unoccupied most of the time.

I will be monitoring the usage to see if electric cars

become more popular and the usage increases.

For now I would conclude that it is safe to hop on

the EV train.

Feel free to reach out if you have any questions

regarding the code or technology used.

2
0

ROGIER VAN DER GEER

DATA DRIVEN
BOARD GAME
DESIGN

DESIGNING OUR OWN
BOARD GAME
When designing a board game, it takes a lot of finetuning to get the
balance right and make the game fun to play. This finetuning in turn
requires you to play endless iterations of the game, or does it?

2
1

THE AI USE CASE GAME
A while back my colleague Walter called me up,

saying he was looking for an expert in board games

to help him out design our own game. While I do

like to play a board game once in a while I am by

no means an expert, but I like to take on a challenge

so I decided to see if I could help out.

Walter already had quite a clear idea of what he

wanted to make: a board game where you take turns

to walk around a monolopy-style track and get to

try to complete AI use cases. We discussed for a

while, and quickly realised that we would need to

start playing to figure out which concepts do or do

not work in a board game. So we drew the board on

a sheet of paper, used python to simulate dice rolls

and took another sheet of paper to keep track of

our balances as we did not have any dice nor game

money at the ready.

We quickly realised that playing like this wasn’t

particularly fun. And, if we were to create a well-

balanced game we would need to play a lot of

games. If only there was a way to automate that...

So, I decided to write a simulation that could play

the game for us. But before we dive into the

simulation, let’s have a look at the end result.

THE GAME
In the game, you lead a team of data scientists and

engineers. Your goal is to create as much business

value as possible for your company while you and

competitors each finish up to three use cases.

The game is played on a board.

PHASES OF THE GAME
All players start the game in the ideation field, where

the goal is to come up with a use case. While in this

phase, you may pick a new use case card every turn,

and add it to your backlog. After picking a use case

card you may decide to start developing it, in which

case you move your pawn to the “start” of the

ideation phase. You will have to successfully pass

the infrastructure, data & ETL, modelling and

productionizing phases in order to complete the

use case.

BUILDING A TEAM
When you are developing a use case, your turn starts

with a die roll. Then, you move your pawn forward

by the number of eyes on the die, offset by your

handicap. Your handicap is your team size minus the

desired team size as provided on the use case card:

this means that if your team size is too small, you

may actually move backward! If your team size is

more than three people short, you will never be able

to complete a use case.

If you come across one of the yellow line named

“team”, then you must take a team card from the

stack. These team cards affect your team size, and

may provide you with a new team member, may

result in you losing a team member, or offer you

one or more team members in return for a fee.

All players start with two team members, and

growing your team during the game is essential!

But a large team also offers a disadvantage: team

members are expensive. You will need to pay your

team members’ salaries at the end of every turn,

even during ideation. If you ever run out of money,

you will need to take a reorganisation card from the

stack. This card will provide you with some extra

budget or exempt you from having to pay the

salaries for a turn, but may cost you business value

or a team member.

BUDGET
Each use case comes with a budget; you will receive

part of the budget when starting the use case, and

the remainder once you have passed the green

dashed line named “budget” halfway the board.

ACTION CARDS
If you land your pawn on one of the gray fields with

an icon, then you must take an action card of the

phase you are in. These action card may provide

you with a benefit, but they may also give you a

disadvantage. This may come in the form of budget,

progress (fields on the board), a number of turns to

skip, or in extreme cases force you to abandon the

use case.

2
2

TAKING THE USE CASE INTO PRODUCTION
Once you pass the finish line you have completed

the use case and may collect the business value

associated to it. The next turn you may choose to

start ideation and draw a new use case, or start

developing a use case that is already in your

backlog.

The game ends when a player has finished his third

use case; the other players then still get to finish the

round. The player who created the most value wins!

THE SIMULATION
When you make a simulation for any kind of game,

the implementation of the game rules is usually the

easy part. Modeling the behaviour of players is

much more complicated: they don’t follow strict

rules when making decisions. And if you do make

a set of rules that the players use to make their

decisions, then you can have a lot of fun optimising

these rules. A few years ago, I did exactly that for

the Risk boardgame.

For this new game the optimal strategy wasn’t my

focus, but it was the game itself. So instead of

spending a lot of time on the decisions of the

players, I spent more time making sure the game

rules were easily configurable. I made some

decisions on how players react to certain situations,

and I assumed that the game would only become

better when people actually put thought into it.

That may sound like a dangerous assumption,

but since the chance element of the game is fairly

heavy I think that the strategy component is not

so important. If you are interested in the

implementation, have a look here.

OPTIMIZING THE GAME
Once the simulation was (mostly) finished, we could

start optimizing the game. Being a data scientist,

I wanted to define a loss function and then let some

algorithm find the most optimal game. But it turns

out to be difficult to capture the notion of a “fun”

game in a loss function A. So we went with doing

the optimization ourselves, looking at multiple as-

pects of the game and going with our gut feeling of

what is a fun game. 0 1 2 3
Finished use cases

G
am

e
s

DURATION OF THE GAME
Perhaps the most important parameter to optimise

was the playing time. No one likes a game that takes

half a day or one that is finished in a single turn.

So we played around with the number of fields on

the board, the number of use cases to complete and

the action cards until we were happy with the result.

Of course the expected number of turns varies with

the number of players: the more players, the more

likely one of the players will be done after a given

number of turns. In the end, we settled for about

15 turns per game, which would make the game

playable in well under an hour.

USE CASES
Next up were the use cases, in which we needed

to balance the desired team size and the resulting

value. We wanted the ideal path for a player to be to

first develop a simple use case (of which the desired

team size is 2 or 3), then a moderately complicated

(4-5), and finally a complicated use case (6+). If we

wouldn’t balance the business value well, it could

end up being a better strategy to finish three simple

uses cases as quickly as possible.

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 2
of turns

ga
m

es

3 players

4 players

6 players

https://blog.godatadriven.com/risk-analysis
https://gitlab.com/rogiervandergeer/gdd-game

2
3

Above you see the results after balancing: on the

left we see that winners have often completed three

use cases, but it is also possible to win with only

two use cases. That is great: this means players have

to balance quickly finishing three use cases versus

finishing some with more value.

In the middle plot we see that winners typically

finish use cases with a higher desired team size,

while on the right we see that these winners

typically finished use cases with a sum of desired

team size of between 8 and 13. If you manage to

finish one use case in each of the three categories

you would end up with a sum of 12+, which

practically means that you won. That is exactly

what we were aiming for!

BUDGET
Also important are the budgets the use cases

provide and the budget that players start with.

We want it to be fairly doable to finish the game

without taking any reorganisation cards, but it

shouldn’t be impossible to run out of budget either.

So we had a look at each use case and the expected

amount of budget needed to complete it. This, of

course, depends on the team size: the larger the

team, the faster you move but the more expenses

you have. Below are a few examples, ranging from

very simple to very complicated. We’ve plotted the

total spent budget while completing the use case

for each possible team size.

As you can see, it is very possible to complete each

use case as long as your team size is in the right

ballpark. If your team is much too small or much too

large, your budget may run out.

0,00

0,05

0,10

0,15

0,20

0,25

0,30

2 3 4 5 6 7

Losers
Winners

Desired team size
Sum of desired team sizes

Fi
n

is
h

e
d

 u
se

 c
as

e
s

G
am

e
s

0,00

0,02

0,06

0,04

0,08

0,12

0,14

0,10

Losers
Winners

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

160

140

120

100

80

60

40

225

200

175

150

125

100

75

50

450

400

350

300

250

200

150

100

2 3 4 5 6 7 8 2 3 4 5 6 7 8 4 5 6 7 8

Team size Team size Team size

Bu
dg

et
 s

pe
nd

budget=80 Desired team size = 2 budget=180 Desired team size = 5 budget=250 Desired team size = 7

160

140

120

100

80

60

40

225

200

175

150

125

100

75

50

450

400

350

300

250

200

150

100

2 3 4 5 6 7 8 2 3 4 5 6 7 8 4 5 6 7 8

Team size Team size Team size

Bu
dg

et
 s

pe
nd

budget=80 Desired team size = 2 budget=180 Desired team size = 5 budget=250 Desired team size = 7

160

140

120

100

80

60

40

225

200

175

150

125

100

75

50

450

400

350

300

250

200

150

100

2 3 4 5 6 7 8 2 3 4 5 6 7 8 4 5 6 7 8

Team size Team size Team size

Bu
dg

et
 s

pe
nd

budget=80 Desired team size = 2 budget=180 Desired team size = 5 budget=250 Desired team size = 7

FINALIZING THE DESIGN
Of course, the rules and the balance of the game

isn’t everything that you need. Walter did a great job

with the design of the game, which is equally

important because no one likes to play a game that

is visually unappealing. By now we have several

copies of the game, and we’ve had people play it

with us at several occasions. So far the reception

has been great... perhaps I should give it a try once,

as I haven’t played the game myself yet. But my

computer has had its fair share with at least a million

games.

ADVANCE YOUR DATA & AI SKILLS

DATA & AI TRAINING
GUIDE 2020

DOWNLOAD THE GODATADRIVEN DATA & AI
TRAINING BROCHURE 2020 FOR A COMPLETE
OVERVIEW OF ALL AVAILABLE DATA SCIENCE,
DATA ENGINEERING, DATA PRODUCT OWNER,
AND EXECUTIVE TRAINING COURSES.

godatadriven.com/training

https://godatadriven.com/topic/training-brochure/

